Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 703
Filtrar
1.
Mar Drugs ; 20(1)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35049911

RESUMO

Green nanotechnology is now accepted as an environmentally friendly and cost-effective advance with various biomedical applications. The cyanobacterium Synechocystis sp. is a unicellular spherical cyanobacterium with photo- and hetero-trophic capabilities. This study investigates the ability of this cyanobacterial species to produce silver nanoparticles (AgNPs) and the wound-healing properties of the produced nanoparticles in diabetic animals. METHODS: UV-visible and FT-IR spectroscopy and and electron microscopy techniques investigated AgNPs' producibility by Synechocystis sp. when supplemented with silver ion source. The produced AgNPs were evaluated for their antimicrobial, anti-oxidative, anti-inflammatory, and diabetic wound healing along with their angiogenesis potential. RESULTS: The cyanobacterium biosynthesized spherical AgNPs with a diameter range of 10 to 35 nm. The produced AgNPs exhibited wound-healing properties verified with increased contraction percentage, tensile strength and hydroxyproline level in incision diabetic wounded animals. AgNPs treatment decreased epithelialization period, amplified the wound closure percentage, and elevated collagen, hydroxyproline and hexosamine contents, which improved angiogenesis factors' contents (HIF-1α, TGF-ß1 and VEGF) in excision wound models. AgNPs intensified catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities, and glutathione (GSH) and nitric oxide content and reduced malondialdehyde (MDA) level. IL-1ß, IL-6, TNF-α, and NF-κB (the inflammatory mediators) were decreased with AgNPs' topical application. CONCLUSION: Biosynthesized AgNPs via Synechocystis sp. exhibited antimicrobial, anti-oxidative, anti-inflammatory, and angiogenesis promoting effects in diabetic wounded animals.


Assuntos
Antibacterianos/administração & dosagem , Diabetes Mellitus Tipo 2 , Prata/administração & dosagem , Úlcera Cutânea/tratamento farmacológico , Synechocystis , Administração Cutânea , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Organismos Aquáticos , Modelos Animais de Doenças , Química Verde , Masculino , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Ratos , Ratos Wistar , Prata/química , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Cicatrização/efeitos dos fármacos
2.
Eur J Vasc Endovasc Surg ; 63(1): 112-118, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801385

RESUMO

OBJECTIVE: The aim of this study was to investigate the efficacy of vascular graft coatings used in the aortic position to prevent vascular graft infection (VGI). METHODS: A systematic review was conducted in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines using a pre-registered protocol (CRD42020206436). Eligible studies used a vascular graft coating in the aortic position and reported on VGI. A search was performed in MEDLINE (PubMed), Embase, Web of Science, and the Cochrane Library. Primary outcome parameters were VGI, patency, and mortality. Pooled estimates of VGI were calculated using odds ratio (OR) and 95% confidence intervals (CIs) wherever possible. Quality assessment was performed with the Newcastle-Ottawa Assessment Scale and the Revised Cochrane risk of bias tool for randomised trials. RESULTS: In total, 6 873 papers were identified. Only eight studies were included. Six of eight studies (75%) reported on known antimicrobial coating strategies such as antibiotics (n = 3) and silver (n = 3). In the other two studies, polymer coated grafts were used. Only three of eight studies compared coated with uncoated grafts (two antibiotic and one silver). Two randomised controlled trials reported on the effect of rifampicin soaked (1 mg/mL) grafts and showed no significant effect in the early (2 months; OR 0.69, 95% CI 0.29 - 1.62) or late (2 years; OR 0.73, 95% CI 0.23 - 2.32) post-operative periods. A retrospective cohort study focusing on the effect of silver coated grafts did not reveal any advantage (OR 0.19, 95% CI 0.02 - 1.64). Two polymer coated grafts were not considered to have a potential benefit in the prevention of VGIs. CONCLUSION: Clinical studies reporting on the antibacterial effect of vascular graft coatings in the aortic position to prevent VGI are scarce. For silver and antibiotic coatings, no significant protection for VGI was observed. New types of grafts or long acting coating strategies are mandatory to prevent this complication in the future.


Assuntos
Antibacterianos/administração & dosagem , Aorta/cirurgia , Prótese Vascular/efeitos adversos , Desenho de Prótese , Infecções Relacionadas à Prótese/prevenção & controle , Prata/administração & dosagem , Enxerto Vascular/efeitos adversos , Doenças da Aorta/cirurgia , Humanos , Polímeros/administração & dosagem
3.
Eur J Vasc Endovasc Surg ; 63(1): 119-137, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34674936

RESUMO

OBJECTIVE: Vascular graft infection (VGI) is a feared complication. Prevention is of the utmost importance and vascular graft coatings (VGCs) could offer a potential to do this, with in vitro research a first crucial step. The aim of this study was to summarise key features of in vitro models investigating coating strategies to prevent VGI in order to provide guidance for the setup of future translational research. DATA SOURCES: A comprehensive search was performed in MEDLINE, Embase, and Web of Science. METHODS: A systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. For each database, a specific search strategy was developed. Quality was assessed with the Toxicological data Reliability Assessment Tool (ToxRTool). In vitro models using a VGC and inoculation of the graft with a pathogen were included. The type of graft, coating, and pathogen were summarised. The outcome assessment in each study was evaluated. RESULTS: In total, 4 667 studies were identified, of which 45 papers met the inclusion criteria. The majority used polyester grafts (68.2%). Thirty-one studies (68.9%) included antibiotics, and nine studies (20%) used a commercial silver graft in their protocol. New antibacterial strategies (e.g., proteolytic enzymes) were investigated. A variety of testing methods was found and focused mainly on bacterial adherence, coating adherence and dilution, biofilm formation, and cytotoxicity. Ninety-three per cent of the studies (n = 41) were considered unreliable. CONCLUSION: Polyester is the preferred type of graft to coat on. The majority of coating studies are based on antibiotics; however, new coating strategies (e.g., antibiofilm coating) are coming. Many in vitro setups are available. In vitro studies have great potential, they can limit the use, but cannot replace in vivo studies completely. This paper can be used as a guidance document for future in vitro research.


Assuntos
Prótese Vascular , Desenho de Prótese , Infecções Relacionadas à Prótese/prevenção & controle , Antibacterianos/administração & dosagem , Humanos , Técnicas In Vitro , Poliésteres , Infecções Relacionadas à Prótese/microbiologia , Prata/administração & dosagem
4.
Arch Toxicol ; 96(2): 487-498, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34787690

RESUMO

Silver nanoparticles (Ag NPs) are priority substances closely monitored by health and safety agencies. Despite their extensive use, some aspects of their toxicokinetics remain to be documented, in particular following inhalation, the predominant route of exposure in the workplace. A same experimental protocol and exposure conditions were reproduced two times (experiments E1 and E2) to document the kinetic time courses of inhaled Ag NPs. Rats were exposed nose-only to 20 nm Ag NPs during 6 h at a target concentration of 15 mg/m3 (E1: 218,341 ± 85,512 particles/cm3; E2, 154,099 ± 5728 particles/cm3). The generated aerosol showed a uniform size distribution of nanoparticle agglomerates with a geometric mean diameter ± SD of 79.1 ± 1.88 nm in E1 and 92.47 ± 2.19 nm in E2. The time courses of elemental silver in the lungs, blood, tissues and excreta were determined over 14 days following the onset of inhalation. Excretion profiles revealed that feces were the dominant excretion route and represented on average (± SD) 5.1 ± 3.4% (E1) and 3.3 ± 2.5% (E2) of the total inhaled exposure dose. The pulmonary kinetic profile was similar in E1 and E2; the highest percentages of the inhaled dose were observed between the end of the 6-h inhalation up to 6-h following the end of exposure, and reached 1.9 ± 1.2% in E1 and 2.5 ± 1.6% in E2. Ag elements found in the GIT followed the trend observed in lungs, with a peak observed at the end of the 6-h inhalation exposure and representing 6.4 ± 4.9% of inhaled dose, confirming a certain ingestion of Ag NPs from the upper respiratory tract. Analysis of the temporal profile of Ag elements in the liver showed two distinct patterns: (i) progressive increase in values with peak at the end of the 6-h inhalation period followed by a progressive decrease; (ii) second increase in values starting at 72 h post-exposure with maximum levels at 168-h followed by a progressive decrease. The temporal profiles of Ag elements in lymphatic nodes, olfactory bulbs, kidneys and spleen also followed a pattern similar to that of the liver. However, concentrations in blood and extrapulmonary organs were much lower than lung concentrations. Overall, results show that only a small percentage of the inhaled dose reached the lungs-most of the dose likely remained in the upper respiratory tract. The kinetic time courses in the gastrointestinal tract and liver showed that part of the inhaled Ag NPs was ingested; lung, blood and extrapulmonary organ profiles also suggest that a small fraction of inhaled Ag NPs progressively reached the systemic circulation by a direct translocation from the respiratory tract.


Assuntos
Exposição por Inalação , Pulmão/metabolismo , Nanopartículas Metálicas/administração & dosagem , Prata/farmacocinética , Aerossóis , Animais , Masculino , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Prata/administração & dosagem , Distribuição Tecidual , Toxicocinética
5.
Braz. j. biol ; 82: 1-9, 2022. graf, ilus, tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468492

RESUMO

This study goal to evaluate the effects of different concentrations of lead (Pb) and silver (Ag) on germination, initial growth and anatomical alterations of Lactuca sativa L. Plants use various mechanisms to reduce the impacts caused by anthropic action, such as xenobiotic elements of soils and water contaminated by heavy metals. These metals were supplied as lead nitrate and silver nitrate and the following treatments were established: control for both metals, maximum dose of heavy metals, for arable soils, allowed by the National Council of the Environment (Ag = 25 mg. Kg-¹, Pb = 180 mg. Kg-¹), double (Ag = 50 mg. Kg-¹, Pb = 360 mg. Kg-¹) and triple (Ag = 75 mg. Kg-¹, Pb = 540 mg. Kg-¹) of this dosage. Vigor and germination tests of the seeds and possible anatomical changes in the leaves and roots of lettuce plants were performed. The species showed a high capacity to germinate under Pb and Ag stress, and the germination was never completely inhibited; however, the germination decreased with increasing Pb concentrations, but not under Ag stress. The use of increasing doses of metals reduced seed vigor and increased chlorophyll content. An increase in biomass was also observed in plants from treatments submitted to Pb. The phytotoxic effects of metals were more pronounced at 15 days after sowing. Anatomically, L. sativa was influenced by metal concentrations, and had a reduction of up to 79.9% in root epidermis thickness at the highest Pb concentration, although some structures did not suffer significant changes. The results suggest that L. sativa presents tolerance to high concentrations of heavy metals, showing possible mechanisms to overcome the stress caused by these metals. In this research lettuce possibly used the mechanism of exclusion of metals retaining Pb and Ag in the roots preserving the photosynthetic apparatus in the aerial part of the plants. In general, the chemical element Pb was more toxic than Ag, in these experimental conditions.


Este estudo teve como objetivo avaliar os efeitos de diferentes concentrações de chumbo (Pb) e prata (Ag) na germinação, crescimento inicial e alterações anatômicas de Lactuca sativa L. As plantas utilizam vários mecanismos para reduzir os impactos causados pela ação antrópica, como elementos xenobióticos de solos e água contaminada por metais pesados. Esses metais foram fornecidos como nitrato de chumbo e nitrato de prata e foram estabelecidos os seguintes tratamentos:controle para ambos os metais, dose máxima de metais pesados, para solos cultiváveis, permitida pelo Conselho Nacional do Meio Ambiente (Ag = 25mg.Kg-¹, Pb = 180mg.Kg-¹), dobro (Ag = 50mg.Kg-¹, Pb = 360mg.Kg-¹) e triplo (Ag = 75mg.Kg-¹, Pb = 540 mg.Kg-¹) desta dosagem. Foram realizados testes de vigor e germinação das sementes e possíveis alterações anatômicas nas folhas e raízes das plantas de alface. A espécie apresentou alta capacidade de germinar sob estresse de Ag e Pb, e a germinação nunca foi completamente inibida; entretanto, a germinação diminuiu com o aumento das concentrações de Pb, mas não sob estresse de Ag. O uso de doses crescentes dos metais, reduziu o vigor das sementes e aumentou o teor de clorofila. Também foi observado aumento da biomassa nas plantas a partir dos tratamentos submetidos ao Pb. Os efeitos fitotóxicos dos metais foram mais acentuados aos 15 dias após a semeadura. Anatomicamente, L. sativa foi influenciada pelas concentrações de metais, e teve uma redução de até 79,9% na espessura da epiderme radicular na maior concentração de Pb, embora algumas estruturas não tenham sofrido alterações significativas. Os resultados sugerem que L. sativa apresenta tolerância a altas concentrações de metais pesados, mostrando possíveis mecanismos para superar o estresse causado por esses metais. Nesta pesquisa a alface possivelmente utilizou o mecanismo de exclusão de metais retendo Pb e Ag nas raízes preservando o aparato [...].


Assuntos
Alface/crescimento & desenvolvimento , Alface/fisiologia , Chumbo/administração & dosagem , Chumbo/toxicidade , Prata/administração & dosagem , Prata/toxicidade
6.
Medicine (Baltimore) ; 100(44): e27633, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34871230

RESUMO

ABSTRACT: Treatment of pediatric deep burns remains a challenge for healthcare personnel. After skin grafting, several treatment options are available, but comparative studies of the different options are scarce. Here, we compared the effectiveness of 2 postoperative dressings used to treat deep pediatric burns after split-thickness skin grafting.At the Department of Paediatrics, University of Pécs, 16 children received skin transplantation after the deep second and third-degree injuries between January 1, 2012 and December 31, 2020 whose results have been analyzed, in this cohort study. We compared the traditionally used Grassolind or Mepitel net and Betadine solution (comparison group) with Aquacel Ag foam and Curiosa gel (intervention group).Seven children were included in the comparison and 9 children in the intervention group. In the control group, the average number of anesthesia was 6.29, while the number of dressing changes was 4.29. After complete wound closure, the dressing's final removal was on the 13th day, while the mean length of hospitalization was 21.89 days. On average, in the intervention group, 3.56 anesthesia was induced, and 0.66 dressing changes were needed after transplantation. Complete healing (dressing removal) was on the 10th day, and the mean length of hospitalization was 12.38 days.In the intervention group, the need for anesthesia significantly decreased by 43% (P = .004), and they required 84% fewer dressing changes after transplantation (P = .001). Moreover, the dressing could be removed 3 days earlier, and the length of hospitalization was reduced by 45% on average.


Assuntos
Bandagens , Queimaduras/terapia , Prata/administração & dosagem , Transplante de Pele , Cicatrização/efeitos dos fármacos , Administração Tópica , Queimaduras/diagnóstico , Queimaduras/cirurgia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Tempo de Internação , Masculino , Pediatria , Transplante Autólogo
7.
Cell Mol Biol (Noisy-le-grand) ; 67(3): 24-34, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34933736

RESUMO

The economic approaches for manufacturing the nanoparticles with physical and chemical effects and limited resistance to antibiotics have been progressed recently due to the rise of microbial resistance to antibiotics. This research aimed to study the antimicrobial efficacy of silver nanoparticles Ag, ZnO, and Tio2 nanoparticles against Salmonella typhimurium and Brucella abortus and Candida albicans. Two isolates of Salmonella and two isolates of Brucella abortus were isolated from food spastically meat and blood specimens, respectively. Candida albicans were isolated from the patient's mouth with oral candidiasis (oral thrush) and confirmed diagnosis by API 20C test. The antimicrobial susceptibility of Salmonella typhimurium and B. abortus isolates were performed against nine different antibiotics. Silver nanoparticles consisting of AgNPs size (90) nm, ZnO NPs size (20, 50) nm as well as TiO2 NPs size (10, 50) nm, were used. UV-Visible spectrophotometer was used to characterize silver nanoparticles. The highest resistance of Candida albicans was seen for fluconazole, Clotrimazole and Itraconazole. The results of the Minimum Inhibitory Concentration (MIC) of nanoparticles against Salmonella typhimurium showed the average MIC of Tio2-10nm and Tio2-50nm were 5000 and 2500 µg\ml for S1 and S2 isolates, respectively. The isolated Brucella abortus (B1 and B2) showed sensitivity to NPs with different MIC. The average MIC for Ag-90nm was 5000 and 2500 µg/ml for B1 and B2 isolates, respectively. The findings suggest NP solution has fungicidal and bactericidal impacts on the tested microorganisms so they can be suitable for multiple applications of the biomedical field such as developing new antimicrobial agents.


Assuntos
Bactérias/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Prata/farmacologia , Titânio/farmacologia , Óxido de Zinco/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/administração & dosagem , Antifúngicos/química , Antifúngicos/farmacologia , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Brucella abortus/efeitos dos fármacos , Brucella abortus/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Clotrimazol/administração & dosagem , Clotrimazol/química , Clotrimazol/farmacologia , Farmacorresistência Fúngica , Fluconazol/administração & dosagem , Fluconazol/química , Fluconazol/farmacologia , Humanos , Itraconazol/administração & dosagem , Itraconazol/química , Itraconazol/farmacologia , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana/métodos , Tamanho da Partícula , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento , Prata/administração & dosagem , Prata/química , Espectrofotometria/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Titânio/administração & dosagem , Titânio/química , Óxido de Zinco/administração & dosagem , Óxido de Zinco/química
8.
Cell Mol Biol (Noisy-le-grand) ; 67(3): 11-23, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34933737

RESUMO

The use of plant extracts represents a promising approach for the synthesis of silver nanoparticles (AgNPs). This study reports the low-cost, green synthesis of AgNPs using the extract of clove and black seeds. The biosynthesized AgNPs were confirmed and characterized by analysis of the spectroscopy profile of the UV-visible spectrophotometer. The purpose of the present study is to evaluate the inhibitory effect concentration (MIC) of AgNPs, clove, and black cumin seed extracts on the growth and swarming of P. mirabilis. Clinical isolates of P. mirabilis were isolated from patients suffering from urinary tract infections. Thirteen types of antibiotics were used in the present study to detect their ability to inhibit P. mirabilis's resistance. Immunological findings included the determination of serum levels of IgG, IgM, IgA and complement protein C3 and C4. Results showed that IgG and IgA concentrations significantly increased (1311.13 ± 72.54 and 279 ± 21.31) respectively in UTI patients in comparison to the healthy control group which was 1089.88 ± 37.33 and 117.611 ± 4.19 respectively, While IgM concentrations were increased non significantly in UTI patients (153.331 ± 6.45) in comparison to healthy control (145.2 ± 13.49). Complement components C3 showed a significant increase in UTI patients with mean values of 125.95 ± 6.22 compared to the control group with mean values of 55.191 ± 9.64, while C4 showed statically non-significant among UTI patients in comparison with the control group (35.195 ± 2.34 and 34.371 ± 1.22) respectively.


Assuntos
Proteínas do Sistema Complemento/metabolismo , Imunoglobulinas/sangue , Nanopartículas Metálicas/administração & dosagem , Extratos Vegetais/farmacologia , Proteus mirabilis/efeitos dos fármacos , Prata/administração & dosagem , Infecções Urinárias/sangue , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Humanos , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Nigella sativa/química , Extratos Vegetais/administração & dosagem , Proteus mirabilis/genética , Proteus mirabilis/fisiologia , Prata/química , Espectrofotometria/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Syzygium/química , Infecções Urinárias/metabolismo , Infecções Urinárias/microbiologia
9.
Comput Math Methods Med ; 2021: 3171547, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938352

RESUMO

BACKGROUND: Patients' clinical antibiotic treatment of deep II degree burns usually fails to achieve the ideal effect; in order to avoid the late result in pigmentation, scarring, and even limb dysfunction, it also needs to deal effectively with burn wounds. AIM: The purpose of this study is to evaluate nanosilver dressing in treating deep II degree burn wound infection in patients with clinical studies. MATERIALS AND METHODS: 106 burn patients were classified into the Sulfadiazine Silver Cream (SSC) group (n = 53) and the Nanosilver Burn Dressing (NSBD) group (n = 53). Both of them received basic wound treatment, and wound healing time and pigmentation fading away time of all patients were recorded. And the wound healing rate of the patients was calculated. Serum levels of tumor necrosis factor alpha (TNF-α) and interleukin-1beta (IL-1ß) were detected pre- and posttreatment. RESULTS: After basic treatment for all patients, Sulfadiazine Silver Cream was used in the SSC group, and Nanosilver Burn Dressing was used in the NSBD group. It was observed that after treatment, compared with the SSC group, there was significant efficiency; wound healing rate, healing time, and pigmentation fading away time were shortened in the NSBD group, and IL-1ß levels were decreased, and the positive rate of bacterial culture was decreased (all P < 0.05). CONCLUSION: Nanosilver Burn Dressing in treating deep II degree burns can effectively reduce the wound infection and promote wound healing. The curative effect was distinct, which was worthy of popularization and application.


Assuntos
Bandagens , Queimaduras/terapia , Nanopartículas Metálicas/administração & dosagem , Prata/administração & dosagem , Infecção dos Ferimentos/terapia , Adulto , Anti-Infecciosos Locais/administração & dosagem , Queimaduras/tratamento farmacológico , Queimaduras/patologia , Biologia Computacional , Feminino , Humanos , Masculino , Sulfadiazina de Prata/administração & dosagem , Fatores de Tempo , Resultado do Tratamento , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico
10.
Biomed Res Int ; 2021: 5013065, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938808

RESUMO

Osteosarcoma is considered to be a highly malignant tumor affecting primarily long bones. It metastasizes widely, primarily to the lungs, resulting in poor survival rates of between 19 and 30%. Standard treatment consists of surgical removal of the affected site, with neoadjuvant and adjuvant chemotherapy commonly used, with the usual side effects and complications. There is a need for new treatments in this area, and silver nanoparticles (AgNPs) are one potential avenue for exploration. AgNPs have been found to possess antitumor and cytotoxic activity in vitro, by demonstrating decreased viability of cancer cells through cell cycle arrest and subsequent apoptosis. Integral to these pathways is tumor protein p53, a tumor suppressor which plays a critical role in maintaining genome stability by regulating cell division, after DNA damage. The purpose of this study was to determine if p53 mediates any difference in the response of the osteosarcoma cells in vitro when different sizes and concentrations of AgNPs are administered. Two cell lines were studied: p53-expressing HOS cells and p53-deficient Saos-2 cells. The results of this study suggest that the presence of protein p53 significantly affects the efficacy of AgNPs on osteosarcoma cells.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Nanopartículas Metálicas/administração & dosagem , Osteossarcoma/tratamento farmacológico , Prata/administração & dosagem , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citotoxinas/farmacologia , Dano ao DNA/efeitos dos fármacos , Humanos , Osteossarcoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
11.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948053

RESUMO

The aim of our investigation was to make a comparative assessment of the biological effects of silver nanoparticles encapsulated in a natural and synthetic polymer matrix. We carried out a comparative assessment of the biological effect of silver nanocomposites on natural (arabinogalactan) and synthetic (poly-1-vinyl-1,2,4-triazole) matrices. We used 144 three-month-old white outbred male rats, which were divided into six groups. Substances were administered orally for 9 days at a dose 500 µg/kg. Twelve rats from each group were withdrawn from the experiment immediately after nine days of exposure (early period), and the remaining 12 rats were withdrawn from the experiment 6 months after the end of the nine-day exposure (long-term period). We investigated the parietal-temporal area of the cerebral cortex using histological (morphological assessments of nervous tissue), electron microscopic (calculation of mitochondrial areas and assessment of the quality of the cell nucleus), and immunohistochemical methods (study of the expression of proteins regulating apoptosis bcl-2 and caspase 3). We found that the effect of the nanocomposite on the arabinogalactan matrix causes a disturbance in the nervous tissue structure, an increase in the area of mitochondria, a disturbance of the structure of nerve cells, and activation of the process of apoptosis.


Assuntos
Córtex Cerebral/química , Galactanos/química , Prata/administração & dosagem , Triazóis/química , Administração Oral , Animais , Caspase 3/metabolismo , Masculino , Nanopartículas Metálicas , Tamanho da Partícula , Polímeros/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Distribuição Aleatória , Ratos , Prata/química , Prata/farmacologia
12.
Sci Rep ; 11(1): 21836, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750447

RESUMO

Biocompatible materials that act as scaffolds for regenerative medicine are of enormous interest. Hydrogel-nanoparticle composites have great potential in this regard, however evaluations of their wound healing and safety in vivo in animal studies are scarce. Here we demonstrate that a guar gum/curcumin-stabilized silver nanoparticle hydrogel composite is an injectable material with exceptional wound healing and antibacterial properties. We show that the curcumin-bound silver nanoparticles themselves exhibit low cytotoxicity and enhance proliferation, migration, and collagen production in in vitro studies of human dermal fibroblasts. We then show that the hydrogel-nanoparticle composite promotes wound healing in in vivo studies on rats, accelerating wound closure by > 40% and reducing bacterial counts by 60% compared to commercial antibacterial gels. Histopathology indicates that the hydrogel composite enhances transition from the inflammation to proliferation stage of healing, promoting the formation of fibroblasts and new blood vessels, while target gene expression studies confirm that the accelerated tissue remodeling occurs along the normal pathways. As such these hydrogel composites show great promise as wound dressing materials with high antibacterial capacity.


Assuntos
Nanopartículas Metálicas/administração & dosagem , Prata/administração & dosagem , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/biossíntese , Curcumina/química , Estabilidade de Medicamentos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Galactanos/química , Humanos , Hidrogéis/química , Masculino , Mananas/química , Teste de Materiais , Nanopartículas Metálicas/química , Nanocompostos/administração & dosagem , Nanocompostos/química , Gomas Vegetais/química , Ratos , Ratos Wistar , Pele/efeitos dos fármacos , Pele/lesões , Pele/patologia , Tecidos Suporte/química , Cicatrização/fisiologia
13.
J Pharm Pharmacol ; 73(12): 1599-1608, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34524456

RESUMO

OBJECTIVES: To investigate the pharmacokinetics, biodistribution and peritoneal retention of Ag2S quantum dots (Qds) after intraperitoneal (IP) injection into mice and to compare the results with those reported for the intravenous (IV) injection of these particles. METHODS: Ag2S Qds was prepared by a simple one-step co-precipitation method and was injected intraperitoneally into mice. Six animals were sacrificed at predetermined time points, and blood, peritoneal content and tissue samples were collected. Ag concentration that represents the concentration of Qds was analysed by atomic absorption spectrophotometry. KEY FINDINGS: Detectability of Qds in the peritoneal sample up to 2 h indicated that, compared with small drug molecules, the absorption of Ag2S Qds from the peritoneal cavity occurred at a slower rate. The AUC tissue/AUC blood ratio in the liver and intestine after IP injection (0.55 and 0.98, respectively) was considerably lower than those for the bolus injection (217 and 94, respectively), while this ratio in the spleen and lungs was markedly higher than the IV route. CONCLUSIONS: Overall, the obtained results suggest that IP injection of Ag2S Qds could be more effective for drug delivery to/imaging of the spleen and lungs, whereas the IV injection for the drug delivery to/imaging of the liver and intestine.


Assuntos
Absorção Peritoneal , Peritônio/metabolismo , Farmacocinética , Pontos Quânticos/metabolismo , Prata , Distribuição Tecidual , Animais , Diagnóstico por Imagem , Portadores de Fármacos , Injeções Intraperitoneais , Masculino , Camundongos Endogâmicos , Pontos Quânticos/administração & dosagem , Prata/administração & dosagem
14.
PLoS One ; 16(8): e0241882, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34460818

RESUMO

Gold nanoparticles (AuNPs) hold great promise in nanomedicine, yet their successful clinical translation has not been realized. Some challenges include effective AuNP targeting and delivery to improve modulation of immune cells of interest while limiting potential adverse effects. In order to overcome these challenges, we must fully understand how AuNPs impact different immune cell subsets, particularly within the dendritic cell and T cell compartments. Herein, we show that polyethylene glycol coated (PEG) gold nanorods (AuNRs) and PEG AuNRs covered with a thin layer of silver (AuNR/Ag) may enhance the immune response towards immune suppression or activation. We also studied the ability to enhance CD4+ Foxp3+ Tregs in vitro using AuNRs functionalized with interleukin 2 (IL2), a cytokine that is important in Treg development and homeostasis. Our results indicate that AuNRs enhance different immune cells and that NP composition matters in immune targeting. This knowledge will help us understand how to better design AuNRs to target and enhance the immune system.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Ouro/farmacologia , Nanopartículas Metálicas/administração & dosagem , Nanotubos/química , Animais , Linfócitos T CD4-Positivos/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/metabolismo , Imunidade/efeitos dos fármacos , Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Polietilenoglicóis/química , Prata/administração & dosagem
15.
PLoS One ; 16(8): e0256401, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34411199

RESUMO

SARS-CoV-2 infection in hospital areas is of a particular concern, since the close interaction between health care personnel and patients diagnosed with COVID-19, which allows virus to be easily spread between them and subsequently to their families and communities. Preventing SARS-CoV-2 infection among healthcare personnel is essential to reduce the frequency of infections and outbreaks during the pandemic considering that they work in high-risk areas. In this research, silver nanoparticles (AgNPs) were tested in vitro and shown to have an inhibitory effect on SARS-CoV-2 infection in cultured cells. Subsequently, we assess the effects of mouthwash and nose rinse with ARGOVIT® silver nanoparticles (AgNPs), in the prevention of SARS-CoV-2 contagion in health workers consider as high-risk group of acquiring the infection in the General Tijuana Hospital, Mexico, a hospital for the exclusive recruitment of patients diagnosed with COVID-19. We present a prospective randomized study of 231 participants that was carried out for 9 weeks (during the declaration of a pandemic). The "experimental" group was instructed to do mouthwash and nose rinse with the AgNPs solution; the "control" group was instructed to do mouthwashes and nose rinse in a conventional way. The incidence of SARS-CoV-2 infection was significantly lower in the "experimental" group (two participants of 114, 1.8%) compared to the "control" group (thirty-three participants of 117, 28.2%), with an 84.8% efficiency. We conclude that the mouth and nasal rinse with AgNPs helps in the prevention of SARS-CoV-2 infection in health personnel who are exposed to patients diagnosed with COVID-19.


Assuntos
COVID-19/prevenção & controle , Pessoal de Saúde , Nanopartículas Metálicas/administração & dosagem , Antissépticos Bucais/administração & dosagem , SARS-CoV-2 , Prata/administração & dosagem , Adolescente , Adulto , Idoso , Animais , COVID-19/epidemiologia , Chlorocebus aethiops , Feminino , Humanos , Masculino , México , Pessoa de Meia-Idade , Células Vero
16.
Int J Mol Sci ; 22(13)2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34281254

RESUMO

Silver nanoparticles (AgNPs) have been imposed as an excellent antimicrobial agent being able to combat bacteria in vitro and in vivo causing infections. The antibacterial capacity of AgNPs covers Gram-negative and Gram-positive bacteria, including multidrug resistant strains. AgNPs exhibit multiple and simultaneous mechanisms of action and in combination with antibacterial agents as organic compounds or antibiotics it has shown synergistic effect against pathogens bacteria such as Escherichia coli and Staphylococcus aureus. The characteristics of silver nanoparticles make them suitable for their application in medical and healthcare products where they may treat infections or prevent them efficiently. With the urgent need for new efficient antibacterial agents, this review aims to establish factors affecting antibacterial and cytotoxic effects of silver nanoparticles, as well as to expose the advantages of using AgNPs as new antibacterial agents in combination with antibiotic, which will reduce the dosage needed and prevent secondary effects associated to both.


Assuntos
Antibacterianos/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Prata/uso terapêutico , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Infecções Bacterianas/tratamento farmacológico , Linhagem Celular , Desenvolvimento de Medicamentos , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Nanotecnologia , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/administração & dosagem , Prata/química , Staphylococcus aureus/efeitos dos fármacos
17.
Food Chem Toxicol ; 154: 112352, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34153347

RESUMO

BACKGROUND: Nanotechnologies provide new opportunities for improving the safety, quality, shelf life, flavor and appearance of foods. The most common nanoparticles (NPs) in human diet are silver metal, mainly present in food packaging and appliances, and silicon and titanium dioxides used as additives. The rapid development and commercialization of consumer products containing these engineered NPs is, however, not well supported by appropriate toxicological studies and risk assessment. Local and systemic toxicity and/or disruption of the gut microbiota (GM) have already been observed after oral administration of NPs in experimental animals, but results are not consistent and doses used were often much higher than the estimated human intakes. In view of the strong evidence linking alterations of the GM to cardiometabolic (CM) diseases, we hypothesized that dietary NPs might disturb this GM-CM axis. MATERIALS AND METHODS: We exposed male C57BL/6JRj mice (n = 13 per dose group) to dietary NPs mixed in food pellets at doses relevant for human exposure: Ag (0, 4, 40 or 400 µg/kg pellet), SiO2 (0, 0.8, 8 and 80 mg/kg pellet) or TiO2 (0, 0.4, 4 or 40 mg/kg pellet). After 24 weeks of exposure, we assessed effects on the GM and CM health (n = 8 per dose group). The reversibility of the effects was examined after 8 additional weeks without NPs exposure (recovery period, n ≤ 5 per dose group). RESULTS: No overt toxicity was recorded. The GM ß-diversity was dose-dependently disrupted by the three NPs, and the bacterial short chain fatty acids (SCFAs) were dose-dependently reduced after the administration of SiO2 and TiO2 NPs. These effects disappeared completely or partly after the recovery period, strengthening the association with dietary NPs. We did not observe atheromatous disease or glucose intolerance after NP exposure. Instead, dose-dependent decreases in the expression of IL-6 in the liver, circulating triglycerides (TG) and urea nitrogen (BUN) were recorded after administration of the NPs. CONCLUSION: We found that long-term oral exposure to dietary NPs at doses relevant for estimated human intakes disrupts the GM composition and function. These modifications did not appear associated with atheromatous or deleterious metabolic outcomes.


Assuntos
Exposição Dietética/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Nanopartículas Metálicas/química , Administração Oral , Animais , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Ácidos Graxos Voláteis/metabolismo , Interleucina-6/metabolismo , Masculino , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/toxicidade , Camundongos Endogâmicos C57BL , Dióxido de Silício/administração & dosagem , Dióxido de Silício/farmacologia , Dióxido de Silício/toxicidade , Prata/administração & dosagem , Prata/farmacologia , Prata/toxicidade , Titânio/administração & dosagem , Titânio/farmacologia , Titânio/toxicidade , Triglicerídeos/metabolismo
18.
Int J Biol Macromol ; 184: 144-158, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34089759

RESUMO

Wound healing is a complicated process that influences patient's life quality. Plant-based polysaccharide has recently gained interest in its use in wound dressing materials because of its biological compatibility, natural abundance, and ideal physiochemical properties. The present study reveals the potential of polysaccharide isolated from Moringa oleifera seed (MOS-PS) and its nanocomposite with silver (MOS-PS-AgNPs) as alternative materials for wound dressing. First, MOS-PS was isolated and structurally characterized by TLC, HPLC, FTIR, NMR, and GPC analyses. A green and simple method was used to synthesize AgNPs using MOS-PS as a stabilizing and reducing agent. The size, morphology, and structure of the MOS-PS-AgNPs were characterized by UV-Vis spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and zeta potential analysis. The results showed that the MOS-PS-AgNPs were spherically shaped, having no cytotoxicity toward mouse fibroblasts cells and promoting their in-vitro migration. Moreover, the MOS-PS-AgNPs displayed strong anti-microbial activity against wound infectious pathogenic bacteria. Finally, the MOS-PS-AgNPs were used for dressing animal wounds and its preliminary mechanism was studied by RT-PCR and histological analysis. The results showed that the MOS-PS-AgNPs can promote wound contraction and internal tissue growth well. Overall, our results indicated that the MOS-PS-AgNPs might be an excellent candidate for use as an optimal wound dressing material.


Assuntos
Antibacterianos/administração & dosagem , Moringa oleifera/química , Polissacarídeos/química , Prata/administração & dosagem , Infecção dos Ferimentos/tratamento farmacológico , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bandagens , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Química Verde , Masculino , Nanopartículas Metálicas , Camundongos , Testes de Sensibilidade Microbiana , Nanocompostos , Tamanho da Partícula , Extratos Vegetais/química , Ratos , Sementes/química , Prata/química , Prata/farmacologia , Cicatrização
19.
Sci Rep ; 11(1): 11312, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050228

RESUMO

In this work we use Mimosa tenuiflora (MtE) extracts as reducing agents to synthesize silver nanoparticles (AgMt NPs) which were characterized by DPPH and Total Polyphenols Assays, UV-visible, X-ray diffractometer (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and Thermogravimetric analysis (TGA). AgMt NPs possess average sizes of 21 nm and fcc crystalline structure, it was also confirmed that the MtE is present in the AgMt NPs even after the cleaning protocol applied. Subsequently, carbopol hydrogels were made and the MtE and the synthesized AgMt NPs were dispersed in different gels (MtE-G and AgMt NPs-G, respectively) at 100 µg/g concentration. The gels were characterized by UV-Vis, IR, and rheology. Antimicrobial tests were performed using Staphylococcus aureus and Escherichia coli. Burn wound healing was evaluated in a second-degree burn injury on a Wistar rats model for 14 days and additional skin biopsies were examined with histopathological analysis. Gel with commercial silver nanoparticles (Ag NPs) was prepared and employed as a control on the biological assays. Hydrogel system containing silver nanoparticles synthesized with Mimosa tenuiflora (AgMt NPs-G) is a promising therapeutic strategy for burn wound healing, this due to bactericidal and anti-inflammatory effects, which promotes a more effective recovery (in percentage terms) by damaged area.


Assuntos
Queimaduras/tratamento farmacológico , Mimosa/química , Extratos Vegetais/administração & dosagem , Prata/administração & dosagem , Animais , Avaliação Pré-Clínica de Medicamentos , Hidrogéis/química , Hidrogéis/uso terapêutico , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Fitoterapia , Casca de Planta/química , Extratos Vegetais/química , Ratos Wistar , Prata/química , Cicatrização/efeitos dos fármacos
20.
Sci Rep ; 11(1): 10751, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031472

RESUMO

We aimed to isolate Acinetobacter baumannii (A. baumannii) from wound infections, determine their resistance and virulence profile, and assess the impact of Silver nanoparticles (AgNPs) on the bacterial growth, virulence and biofilm-related gene expression. AgNPs were synthesized and characterized using TEM, XRD and FTIR spectroscopy. A. baumannii (n = 200) were isolated and identified. Resistance pattern was determined and virulence genes (afa/draBC, cnf1, cnf2, csgA, cvaC, fimH, fyuA, ibeA, iutA, kpsMT II, PAI, papC, PapG II, III, sfa/focDE and traT) were screened using PCR. Biofilm formation was evaluated using Microtiter plate method. Then, the antimicrobial activity of AgNPs was evaluated by the well-diffusion method, growth kinetics and MIC determination. Inhibition of biofilm formation and the ability to disperse biofilms in exposure to AgNPs were evaluated. The effect of AgNPs on the expression of virulence and biofilm-related genes (bap, OmpA, abaI, csuA/B, A1S_2091, A1S_1510, A1S_0690, A1S_0114) were estimated using QRT-PCR. In vitro infection model for analyzing the antibacterial activity of AgNPs was done using a co-culture infection model of A. baumannii with human fibroblast skin cell line HFF-1 or Vero cell lines. A. baumannii had high level of resistance to antibiotics. Most of the isolates harbored the fimH, afa/draBC, cnf1, csgA and cnf2, and the majority of A. baumannii produced strong biofilms. AgNPs inhibited the growth of A. baumannii efficiently with MIC ranging from 4 to 25 µg/ml. A. baumannii showed a reduced growth rate in the presence of AgNPs. The inhibitory activity and the anti-biofilm activity of AgNPs were more pronounced against the weak biofilm producers. Moreover, AgNPs decreased the expression of kpsMII , afa/draBC,bap, OmpA, and csuA/B genes. The in vitro infection model revealed a significant antibacterial activity of AgNPs against extracellular and intracellular A. baumannii. AgNPs highly interrupted bacterial multiplication and biofilm formation. AgNPs downregulated the transcription level of important virulence and biofilm-related genes. Our findings provide an additional step towards understanding the mechanisms by which sliver nanoparticles interfere with the microbial spread and persistence.


Assuntos
Acinetobacter baumannii/fisiologia , Antibacterianos/administração & dosagem , Biofilmes/crescimento & desenvolvimento , Prata/administração & dosagem , Infecções por Acinetobacter , Acinetobacter baumannii/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Chlorocebus aethiops , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla , Humanos , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Tamanho da Partícula , Prata/química , Prata/farmacologia , Células Vero , Virulência/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...